Wednesday, April 8, 2015

Drugs in Clinical Pipeline: AZD8931

AZD8931 [2-(4-((4-((3-chloro-2-fluorophenyl)amino)-7-methoxyquinazolin-6-yl)oxy)piperidin-1-yl)-N-methylacetamide] has a unique pharmacologic profile providing equipotent inhibition of EGFR, erbB2, and erbB3 signaling and showing greater antitumor activity than agents with a narrower spectrum of erbB receptor inhibition in specific preclinical models.  AZD8931 is currently being evaluated in Phase I human clinical trials for the treatment of cancer.

Common Name: AZD8931
Synonyms: AZD-8931; AZD8931; AZD 8931; Sapitinib
IUPAC Name: 2-(4-((4-((3-chloro-2-fluorophenyl)amino)-7-methoxyquinazolin-6-yl)oxy)piperidin-1-yl)-N-methylacetamide
CAS Number: 848942-61-0
Mechanism of Action: Kinase Inhibitior; EGFR Inhibitor; ERBB2 Inhibitor; ERBB3 Inhibitor
Indication: Various Cancers
Development Stage: Phase I
Company: AstraZeneca

Deregulation of HER family signaling promotes proliferation and tumor cell survival and has been described in many human cancers. Simultaneous, equipotent inhibition of EGFR-, HER2-, and HER3-mediated signaling may be of clinical utility in cancer settings where the selective EGFR or HER2 therapeutic agents are ineffective or only modestly active. Docking studies based on a model of the HER2 kinase domain helped rationalize the increased HER2 activity seen with the methyl acetamide side chain present in AZD8931. AZD8931 exhibited good pharmacokinetics in preclinical species and showed superior activity in the LoVo tumor growth efficacy model compared to close analogues [1].

In vitro, AZD8931 showed equipotent, reversible inhibition of EGFR (IC(50), 4 nmol/L), erbB2 (IC(50), 3 nmol/L), and erbB3 (IC(50), 4 nmol/L) phosphorylation in cells. In proliferation assays, AZD8931 was significantly more potent than gefitinib or lapatinib in specific squamous cell carcinoma of the head and neck and non-small cell lung carcinoma cell lines. In vivo, AZD8931 inhibited xenograft growth in a range of models while significantly affecting EGFR, erbB2, and erbB3 phosphorylation and downstream signaling pathways, apoptosis, and proliferation [2].


References:
1. Barlaam, B.; et. al. Discovery of AZD8931, an Equipotent, Reversible Inhibitor of Signaling by EGFR, HER2, and HER3 Receptors. ACS Med Chem Lett 2013, 4(8), 742-746.
2. Hickinson, D. M.; et. al. AZD8931, an equipotent, reversible inhibitor of signaling by epidermal growth factor receptor, ERBB2 (HER2), and ERBB3: a unique agent for simultaneous ERBB receptor blockade in cancer. Clin Cancer Res 2010, 16(4), 1159-1169.